Modeling action potential generation and propagation in NRK fibroblasts.
نویسندگان
چکیده
Normal rat kidney (NRK) fibroblasts change their excitability properties through the various stages of cell proliferation. The present mathematical model has been developed to explain excitability of quiescent (serum deprived) NRK cells. It includes as cell membrane components, on the basis of patch-clamp experiments, an inwardly rectifying potassium conductance (G(Kir)), an L-type calcium conductance (G(CaL)), a leak conductance (G(leak)), an intracellular calcium-activated chloride conductance [G(Cl(Ca))], and a gap junctional conductance (G(gj)), coupling neighboring cells in a hexagonal pattern. This membrane model has been extended with simple intracellular calcium dynamics resulting from calcium entry via G(CaL) channels, intracellular buffering, and calcium extrusion. It reproduces excitability of single NRK cells and cell clusters and intercellular action potential (AP) propagation in NRK cell monolayers. Excitation can be evoked by electrical stimulation, external potassium-induced depolarization, or hormone-induced intracellular calcium release. Analysis shows the roles of the various ion channels in the ultralong ( approximately 30 s) NRK cell AP and reveals the particular role of intracellular calcium dynamics in this AP. We support our earlier conclusion that AP generation and propagation may act as a rapid mechanism for the propagation of intracellular calcium waves, thus contributing to fast intercellular calcium signaling. The present model serves as a starting point to further analyze excitability changes during contact inhibition and cell transformation.
منابع مشابه
Modeling Action Potential Generation and Propagation in
Normal rat kidney (NRK) fibroblasts change their excitability properties through the various stages of cell proliferation. The present mathematical model was developed to explain excitability of quiescent (serum deprived) NRK cells. It includes as cell membrane components, based on patchclamp experiments, an inwardly rectifying potassium conductance (GKir), an L-type calcium conductance (GCaL),...
متن کاملSynchronized Ca2+ signaling by intercellular propagation of Ca2+ action potentials in NRK fibroblasts.
The intercellular propagation of Ca2+waves by diffusion of inositol trisphosphate has been shown to be a general mechanism by which nonexcitable cells communicate. Here, we show that monolayers of normal rat kidney (NRK) fibroblasts behave like a typical excitable tissue. In confluent monolayers of these cells, Ca2+ action potentials can be generated by local depolarization of the monolayer on ...
متن کاملIonic basis for excitability of normal rat kidney (NRK) fibroblasts.
Ionic membrane conductances of normal rat kidney (NRK) fibroblasts were characterized by whole-cell voltage-clamp experiments on single cells and small cell clusters and their role in action potential firing in these cells and in monolayers was studied in current-clamp experiments. Activation of an L-type calcium conductance (GCaL) is responsible for the initiation of an action potential, a cal...
متن کاملThe Different Mechanisms of Action Potential Propagation in the Heart
It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...
متن کاملThe Different Mechanisms of Action Potential Propagation in the Heart
It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 287 4 شماره
صفحات -
تاریخ انتشار 2004